Approximate Integer Common Divisors

نویسنده

  • Nick Howgrave-Graham
چکیده

We show that recent results of Coppersmith, Boneh, Durfee and Howgrave-Graham actually apply in the more general setting of (partially) approximate common divisors. This leads us to consider the question of “fully” approximate common divisors, i.e. where both integers are only known by approximations. We explain the lattice techniques in both the partial and general cases. As an application of the partial approximate common divisor algorithm we show that a cryptosystem proposed by Okamoto actually leaks the private information directly from the public information in polynomial time. In contrast to the partial setting, our technique with respect to the general setting can only be considered heuristic, since we encounter the same “proof of algebraic independence” problem as a subset of the above authors have in previous papers. This problem is generally considered a (hard) problem in lattice theory, since in our case, as in previous cases, the method still works extremely reliably in practice; indeed no counter examples have been obtained. The results in both the partial and general settings are far stronger than might be supposed from a continued-fraction standpoint (the way in which the problems were attacked in the past), and the determinant calculations admit a reasonably neat analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Algorithm for Solving the General Approximate Common Divisors Problem and Cryptanalysis of the FHE Based on the GACD problem

In this paper, we propose a new algorithm for solving the general approximate common divisors (GACD) problems, which is based on lattice reduction algorithms on certain special lattices and linear equation solving algorithms over integers. Through both theoretical arguments and experimental data, we show that our new algorithm works in polynomial time but under roughly the following condition: ...

متن کامل

Faster Algorithms for Approximate Common Divisors: Breaking Fully-Homomorphic-Encryption Challenges over the Integers

At EUROCRYPT ’10, van Dijk et al. presented simple fully-homomorphic encryption (FHE) schemes based on the hardness of approximate integer common divisors problems, which were introduced in 2001 by Howgrave-Graham. There are two versions for these problems: the partial version (PACD) and the general version (GACD). The seemingly easier problem PACD was recently used by Coron et al. at CRYPTO ’1...

متن کامل

A Lattice Solution to Approximate Common Divisors

The approximate common divisor problem(ACDP) is to find one or more divisors which is the greatest common divisor of the approximate numbers a and b of two given numbers a0 and b0. Howgrave-Graham[7] has considered the special case of b = b0 and gave a continued fraction approach and a lattice approach to find divisors. Furthermore he raised another lattice approach for ACDP based on Coppersmit...

متن کامل

Order-Preserving Encryption Using Approximate Integer Common Divisors

We present a new, but simple, randomised order-preserving encryption (OPE) scheme based on the general approximate common divisor problem (GACDP). This scheme requires only O(1) arithmetic operations for encryption and decryption. We show that the scheme has optimal information leakage under the assumption of uniformly distributed plaintexts, and we indicate that this property extends to some n...

متن کامل

Exact Computat ion Using Approximate Gröbner Bases

We discuss computation of approximate Gröbner bases at high but finite precision. We show how this can be used to deduce exact results for various applications. Examples include implicitizing surfaces, finding multivariate polynomial greatest common divisors and factorizations over the rational and complex number fields. This is an extended version of a paper for SYNASC 2010, titled úPolynomial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001